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Abstract. In this paper, we first refine a recently proposed metaheuristic called “Marriage
in Honey-Bees Optimization” (MBO) for solving combinatorial optimization problems with
some modifications to formally show that MBO converges to the global optimum value. We
then adapt MBO into an algorithm called “Honey-Bees Policy Iteration” (HBPI) for solving
infinite horizon-discounted cost stochastic dynamic programming problems and show that
HBPI also converges to the optimal value.
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1. Introduction

Swarm intelligence-based optimization for solving difficult non-stochastic
combinatorial optimization problems has been successful in various settings
[6, 10, 23], for example, by properly casting the social search behaviors
of biological ant colonies [13–15] and the sociological behavior associated
with bird flocking and fish schooling [16] into artificial models of stochastic
search. The success is mainly due to the fact that the optimization methods
via swarm intelligence have distinguished computational advantages of dis-
tributed “simple” task processing, self-organization, and distributed infor-
mation utilization in forming a “social” opinion during optimum-seeking
process. Recently, Abbass [1, 2] proposed a metaheuristic called “Marriage
in Honey-Bees Optimization” (MBO) for solving non-stochastic combina-
torial optimization problems inspired from the phylogenetic sociality in
honey-bees (the mating process of honey-bees), and applied the metaheuris-
tic to a class of propositional satisfiability problems and empirically showed
that the new method improves other well-known algorithms for the satisfi-
ability problems. However, some parts of the algorithm description in [1, 2]
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are not clearly presented and more importantly, the problem to prove the
convergence of the MBO algorithm has not been still resolved.

In this paper, we first refine MBO for solving non-stochastic combi-
natorial optimization problems to formally show that MBO converges to
the global optimum value. We then adapt MBO into an algorithm called
“Honey-Bees Policy Iteration” (HBPI) for solving stochastic sequential deci-
sion-making problems and show that HBPI also converges to the optimal
value.

The artificial model for the social behaviors of honey-bees in the pres-
ent paper is the monogynous colony that has a single queen, for simplicity.
Extensions to polygynous colony having more than one queen is straightfor-
ward. The model in the present paper is in the context of stochastic search
for optimization, not exactly imitating the behaviors of the real honey-bees
colonies [12], based on the models considered in the MBO algorithms [1, 2].

The honey-bees colony in our MBO setting consists of a queen, drones,
workers, and broods. The queen takes the charge of reproduction of new
individuals (potential solutions to a given problem). Drones are haploid
(having one copy of the allele to determine the sex or having half the
genetic material of a worker) individuals and represent the fathers of the
colony. Workers are responsible for broods care. The honey-bees colony
basically operates as follows. Mating begins with a waggle dance performed
by the queen. The queen takes off on her mating flights followed by the
drones. Mating takes place in the air where the queen mates a number of
(probabilistically) selected drones in each flight. Sperms from the selected
drones are added and accumulated in the spermatheca of the queen to
form the genetic pool of potential broods (“premature” potential solu-
tions of the problem). For every fertilized egg laid by the queen, sperm is
retrieved randomly from her spermatheca and the sperm is “mixed” with
the queen’s genotype in order for the queen to breed. The newly born
broods are then fostered by the workers (improving the premature solutions
by a heuristic local search), and finally among the fostered broods and the
current queen, a new queen is elected. The sequence of the newly selected
queen in MBO preserves the monotonicity property and MBO converges to
the global optimum value (the global optimum if it is unique) to the given
problem with probability one.

MBO is then adapted to HBPI algorithm for approximately solving infi-
nite horizon discounted cost stochastic dynamic programming (SDP) prob-
lems, also known as Markov Decision Processes (MDPs) [4, 24], extending
the applicability of the MBO metaheuristic into stochastic sequential deci-
sion making problems. Unfortunately, a stochastic control problem formu-
lated by SDP often experiences the curse of dimensionality, which makes the
application of the well-known exact algorithms, e.g., value iteration (VI) or
policy iteration (PI) [24], impractical (see Section 3).
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HBPI inherits the spirit of PI that solves MDPs exactly. Contrary to
PI, by directly manipulating the policies, HBPI eliminates the operation of
minimization over the entire action space in the “policy improvement” step
of PI. HBPI preserves a certain monotonicity property via “elitist” policies
and converges to the optimal value with probability one.

This paper is organized as follows. We start with presenting the MBO
algorithm and analyze its convergence in Section 2. In Section 3, we
describe and analyze HBPI. We conclude the paper with some remarks in
Section 4.

2. Honey-Bees Optimization

2.1. algorithm description

Consider an optimization problem of

min
x∈�

f (x),

where �={0,1}n is a finite solution space of binary strings (or genotypes)
of the length n <∞ and f : �→R+ is a nonnegative cost function. Our
goal is to find x∗ ∈� that achieves the minimum. A high-level description
of MBO is shown in Figure 1, where some steps are described at a concep-
tual level, with details provided below.

The algorithm starts with initializing the queen’s genotype q0 ∈� arbi-
trarily and the size of the queen’s spermatheca M �1 that denotes the max-
imum possible number of matings (sperms of drones; we will use the terms
of “sperm of drone” and “drone” interchangeably) that can be deposited per
the queen’s mating flight (the first two steps of the Queen’s Mating Flight
Initialization step and the inner Repeat step in the outer Repeat step in Fig-
ure 1). The total number of the broods j � 1 to be created in the Broods
Generation and Improvements step needs to be selected and the mutation
probability µ∈ (0,1) for the mutation of the broods needs to be selected,
too. The value of the initial speed s∈ (0,1], the minimum energy Emin∈ (0,1],
the initial energy e∈ (Emin,1], the discount factor α∈ (0,1] for the speed and
the reduction factor β for the energy such that � e−Emin

β
�� 1 need to be also

initialized for each queen’s mating flight, respectively.
The algorithm then iteratively improves the queen’s genotype. From the

New Queen Generation step, it can be easily seen that the following mono-
tonicity is forced by the algorithm:

f (qm+1)�f (qm), m=0,1, . . .

Therefore, this monotonicity implies that once qm is equal to an optimal
solution x∗ ∈�, the algorithm converges to the global optimum value in the
sense that f (qm)=f (qi)=minx∈� f (x) for all i >m.
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Figure 1. Honey-bees optimization.
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At each iteration of m � 0, the queen starts a mating flight. To ensure
that the queen flies for a certain amount of time, the initial values of the
energy E(0) and the speed S(0) of the queen are initialized with e and s,
respectively and reduced by decrement of β and factor of α, respectively:

E(k+1)=E(k)−β, S(k+1)=α ·S(k), α∈ (0,1],

until the value of the energy is no larger than the predetermined value of
Emin. In other words, the total number of flies in terms of iteration k by
the queen is � e−Emin

β
�. The energy serves as a “counter” controlled by the

parameter β. As mentioned before, this emulates the queen’s mating flight
time, i.e., controls the degree of a local search in the solution space. We fol-
low here the original structure/algorithm description of MBO even though
there would be much simpler way of describing it.

At each fly of the queen, a new potential drone (new genotype) tk ∈�

for mating with the queen is generated by probabilistically flipping each
bit independently with probability S(k) in the current drone’s genotype tk−1

with the probability of

S(k)H(tk−1,tk)(1−S(k))n−H(tk−1,tk), (1)

where H(·) is the Hamming distance between tk−1 and tk and the speed
S(k) of the queen acts as the probability of changing the current bit value
at each bit position (the Potential Drone Selection step in Figure 1). If
the resultant new genotype has a lower cost value (f (tk−1) > f (tk)), then
it is accepted with the probability 1. If the new genotype has a higher
cost value (f (tk−1)�f (tk)), then it will be accepted with certain probability
given by the Boltzmann factor. That is, with probability

min
{

1, exp
(

f (tk−1)−f (tk)

S(k)

)}
,

tk’s sperm is added to the queen’s spermatheca: P←P ∪{tk} (the Potential
Drone Acceptance step in Figure 1). Note that the set P is a multiset. As
in Simulated Annealing (SA) [21], this enables the algorithm to hill-down
from a locally optimal solution.

The queen can hold at most M potential drones. So, if |P |>M,

P←P −{t} where t ∈arg max
x∈P

f (x).

In other words, if the size of P > M, then we select one sperm of
arg maxx∈P f (x) and remove it from P . This step is different from the orig-
inal MBO algorithms presented i [1, 2]. To the author’s understanding,
in the original MBO in [1, 2], the comparison between the most recently
added drone and tk is made and then tk is added as a potential drone
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“probabilistically” if tk is worse than the most recently added drone. tk
replaces the most recently added drone if tk is better between the two. On
the other hand, here we eliminate the worst genotype from the sperma-
theca while maintaining the total number of drones in the spermatheca by
M. Observe that the speed of the queen acts similarly to the temperature
parameter in SA, making the probability of having a large change of the
current genotype in the search space decrease gradually.

Once the queen’s mating flights are finished, the queen returns to the
nest and the brood creation process begins (the Broods Generation and
Improvements step in Figure 1). This process is very similar to Genetic
Algorithm (GA) [25, 28]. We first keep the elitist sperm from the queen’s
spermatheca P :

be ∈arg min
x∈P

f (x).

We then select j sperms, b1, . . . , bj from P with the equal probability of
1/|P | or by the cost proportional probability; bi is selected with the prob-
ability of f (bi)

−1/
∑

b∈P f (b)−1 (if f is a positive function) and then apply
the crossover operation to each bi with the current genotype of the queen qm,
generating the brood set Bc={bc

1, . . . , bc
j }. The crossover operation method

can be the single-point, the two-point, or the uniform types [27], even an
adaptive crossover with tuning crossover probability (see, e.g., [28]), etc.
Each bc

i ∈Bc is subsequently mutated to bm
i with the mutation probability

of µ∈ (0,1):

µH(bc
i ,b

m
i )(1−µ)n−H(bc

i ,b
m
i ),

where µ is the probability of changing the bit value independently at
each bit position. The mutation process creates the mutated brood set
Bm={bm

1 , . . . , bm
j }. Each brood in Bm is then improved by the workers, gen-

erating the improved set Bw={bw
1 , . . . , bw

j }. The workers corresponds to a
local search algorithm, which is similar to the idea of memetic algorithm
[10] that incorporates a local search in GA. We update the elitist brood by

bu
e← arg min

x∈{be}∪Bw

f (x).

Finally, the queen’s genotype is updated by

qm+1∈arg min
x∈{qm,bu

e }
f (x).

REMARK. For the potential drone acceptance probability given by min{1,

exp((f (tk−1)− f (tk))/S(k))}, we can replace tk−1 with qm as in the orig-
inal MBO [1]. Then, the queen accepts tk as a potential drone in her
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spermatheca even if tk has the higher cost value and the probabil-
ity of acceptance will be high when the cost of the drone tk is as
good as the queen’s cost or when the queen’s speed is still high. The
high speed gives more emphasis on exploration in the search space
than exploitation and the low speed gives more emphasis on exploi-
tation. Even if qm affects the generation of qm+1, the mutation pro-
cess of the Broods Generation and Improvements step is independently
processed with the Repeat step. It can be shown that MBO still con-
verges to the global optimum value with a slight change to the proof
of Theorem 2.1. In this case, we can alternatively use the proof tech-
niques from the convergence results in the Ant Colony Optimization
literature, e.g., Gutjahr’s convergence analysis [17, 18] to handle the
convergence.

MBO can be (roughly) viewed as a hybrid scheme that combines SA and
GA with some differences, where SA part corresponds to the queen’s mat-
ing flight to obtain the potential drone policies’ sperms in her spermatheca
and GA part corresponds to Broods Generation and Improvements step with
some differences.

SA is based on the Metropolis scheme. An initial state of a thermody-
namic system is chosen at some energy (the cost value of a solution for
a given problem) and temperature. Holding the temperature fixed, the ini-
tial configuration is perturbed and the change in energy is computed. If
the new configuration is better, it is accepted. If not, it is accepted with a
probability given by the Boltzmann factor. This local search behavior for
a fixed temperature is then repeated for a sufficient time to achieve a cer-
tain equilibrium, and then the temperature is decremented and the entire
process repeated until a frozen state is achieved (see, e.g., [21]). The poten-
tial drone policy acceptance rule of MBO is exactly the same as SA’s. How-
ever, MBO does not repeat the local search for a “long” time for each
fixed queen’s speed (temperature). The local search is done exactly once for
each speed with the control of the sperm contents of her spermatheca by
keeping only the best M drones generated so far until the queen’s energy
gets worn out. Furthermore, the perturbation of the solution is done with
the queen’s speed, which emulates the queen’s position changes, correspond-
ingly a drone’s fly that follows the queen’s mating flight. (Of course, we can
actually incorporate the exact SA procedures in MBO instead of the pro-
cedure given in Figure 1, but then losing the spirit of the social behavior
of the honey-bees colony. In fact, if we set α = 1, then the queen’s mat-
ing flight part corresponds to the repeated local search in SA with a fixed
temperature, where the local search duration is controlled with E(k), the
energy of the queen.)

GA is based on the three basic operations of selection, crossover, and
mutation over the populations. The Broods Generation and Improvements
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step operates the three basic procedures in GA with incorporation of the
elitist strategy by De Jong [11]. In contrast to GA, the honey-bees colony
has the workers that foster the premature broods. The local search used in
MBO depends on the problem being solved, for example, 2-opt and 3-opt
algorithms for traveling salesman problems [3, 19].

2.2. convergence analysis

THEOREM 2.1. MBO converges to the global optimum value in the sense
that

lim
m→∞Pr

{
qm∈arg min

x∈�
f (x)

}
=1.

Proof. Let us first fix the iteration m� 0 arbitrarily. From the choice of
e=E(0), for k > e−Emin

β
, E(k)<Emin so that the inner Repeat step finishes

with k= k̂=�E(0)−Emin
β
�.

From the inner Repeat step in Figure 1, once an optimal solution
x∗ ∈ arg minx∈� f (x) is generated, it is deposited into the queen’s sperma-
theca with probability 1 and it is kept there throughout the Repeat step.
Let the minimal probability of generating x∗ in the Repeat step p given as

p= min
k=1,... ,k̂−1

min
x∈�

{
S(k)H(x,x∗)(1−S(k))n−H(x,x∗)} ,

where H(x, x∗) denotes the Hamming distance between genotypes x and
x∗. Observe that p is in (0,1) because Smin = S(0)αk̂ with α ∈ (0,1] is in
(0,1).

We then have that

Pr{tk̂=x∗}�1− (1−p)k̂ >0,

which immediately implies that

Pr{be=x∗}�1− (1−p)k̂.

Now let the minimal probability of mutating into x∗ or generating x∗

pb=min
x∈�

{
µH(x,x∗)(1−µ)n−H(x,x∗)}∈ (0,1)

(pb=µn for µ<1/2). Then the probability that qm+1 is x∗ is lower bounded
by
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Pr{qm+1=x∗}�Pr{bu
e =x∗}�Pr{be=x∗}

+Pr{x∗ ∈Bw}−Pr{be=x∗ and x∗ ∈Bw}
� (1− (1−p)k̂)+ (1− (1−pb)

j )

−(1− (1−p)k̂)(1− (1−pb)
j )

>0.

The above result holds for any fixed m=0,1,2, . . . . Therefore, with some
ε ∈ (0,1] and the selection rule of

qm+1∈arg min
x∈{qm,bu

e }
f (x),

we have that for any fixed m�1,

Pr{qm=x∗}�1− (1− ε)m >0,

which proves the statement of Theorem.

REMARK 1. From the result of Theorem 2.1, to obtain a “good” prob-
ability bound on the performance of MBO, the size of the broods popu-
lations, i.e., the value of j and the size of k̂ might need to be large for
applying MBO in practice. However, the analysis here is based on a very
coarse estimation of the probabilities that the potential drone selection and
the mutation processes generate an optimal solution so that convergence to
the optimum value with high probability may be achieved with a moderate
size of the parameters. Furthermore, from the monotonicity property of the
sequence {qm}, if the global optimum x∗ ∈� is unique, MBO converges to
the global optimum with probability 1.

REMARK 2. As in convergence analysis of evolutionary algorithms in
other works (see, e.g., [26]), the proof of Theorem 2.1 can be done with a
Markov chain analysis but our proof is simpler.

3. Application to Stochastic Dynamic Programming

In this section, we adapt MBO into an algorithm for solving infinite hori-
zon discounted cost stochastic dynamic programming problems (see, e.g,
[4, 24] for a substantial discussion) with suitable extensions and modifica-
tions of MBO and show that the algorithm converges to an optimal solu-
tion of a given SDP problem. We begin with some backgrounds.
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3.1. preliminaries

Consider an infinite horizon discounted cost SDP problem (X,A,P,C)

with finite state space X, finite action space A, cost function C such that
C: X×A→R, and transition function P that maps {(x, a)|x ∈X,a∈A} to
the set of all possible probability distributions over X. We denote the prob-
ability of transitioning to state y ∈X when taking action a in state x ∈X

by P(x, a)(y). For simplicity, we assume that every action is admissible in
every state.

Let � be the set of all stationary policies π :X→A. Define the optimal
value associated with an initial state x ∈X:

V ∗(x)=min
π∈�

V π(x), x ∈X, where

V π(x)=E

[ ∞∑
t=0

γ tC(xt , π(xt ))

∣∣∣∣x0=x

]
, x ∈X, 0<γ <1, π ∈�,

where xt is a random variable denoting state at time t and γ is the discount
factor. The sequence {xt , t �0} is a stochastic process defined by following π.
Fixing a policy π ∈� induces a Markov chain. Throughout the remaining
of paper, we assume that γ is fixed.

Given a fixed initial state probability distribution δ defined over X, we
define the average value of π for δ or cost value of π :

Jπ
δ =

∑
x∈X

V π(x)δ(x).

The problem is to find an optimal policy π∗ ∈� that achieves

J ∗δ =min
π∈�

Jπ
δ .

Unfortunately, many stochastic control problems formulated by SDP
experience the curse of dimensionality, which makes the application of VI
or PI [24], impractical. The time-complexity depends on the size of the
state space and on the size of the action space, so that the runtime can
easily get prohibitive if these sizes are large. The running time complex-
ity of VI is polynomial in |X|, |A|, and 1/(1− γ ) and in particular one
iteration takes O(|X|2|A|) time. For PI, doing the policy improvement step
takes O(|X|2|A|) time. See, e.g., [22] for a detailed discussion including the
state and action space-dependent time complexity of the linear program-
ming approach for solving MDPs. Therefore, applying the exact methods
for solving MDPs is very difficult if the state and/or the action space are
large, which is true for many interesting problems.

Numerous approximation-based schemes exist to get away with the
dimensionality problem via various techniques, e.g., structural analysis,



A CONVERGING MBO AND APPLICATION TO SDP 433

aggregation, sampling, feature extraction, etc. (see, e.g., [5, 24, 29]). However,
there are few algorithms that incorporate the successful techniques of evolu-
tionary computation into the SDP context. Exceptions are recent works by
Chang et al. [8, 9] based on GA and an ant system. A comparison study of
these evolutionary computation-based approaches for solving SDP problems
is a good research topic but beyond the present paper’s scope.

Even though a single iteration time complexity O(|X|2|A|) of VI is
smaller than O(|X|2|A| + |X|3)-complexity of PI, the number of iterations
required for VI can grow exponentially in the discount factor. Indeed, it can
be shown that PI converges faster to the optimal value than VI in terms of
the number of iterations if both algorithms begin with the same value [24]
and it is known that VI is usually outperformed by PI in practical applica-
tions [20]. Furthermore, the structure of MBO naturally induces a PI-like
algorithm with an adaptation of MBO. Therefore, we review the PI algo-
rithm briefly here. See, e.g., [24] for a detailed discussion.

PI computes π∗ in a finite number of steps because there are a finite
number of policies in � and PI preserves the monotonicity in terms of the
policy performance. The PI algorithm consists of two parts: policy evalua-
tion and policy improvement. Let B(X) be the space of real-valued func-
tions on X. We define an operator T : B(X)→B(X) as

T (	)(x)=min
a∈A

⎧⎨
⎩C(x, a)+γ

∑
y∈X

P (x, a)(y)	(y)

⎫⎬
⎭, 	∈B(X), x ∈X (2)

and similarly, an operator Tπ :B(X)→B(X) for π ∈� as

Tπ(	)(x)=C(x,π(x))+γ
∑
y∈X

P (x,π(x))(y)	(y), 	∈B(X), x ∈X. (3)

For each policy π ∈�, there exists a corresponding unique 	∈B(X) such
that for x ∈X,

Tπ(	)(x)=	(x) and 	(x)=V π(x).

The policy evaluation step obtains V π for a given π , and the policy
improvement step obtains π̂ ∈� such that

T (V π)(x)=Tπ̂ (V π)(x), x ∈X.

The policy π̂ improves π in that V π̂(x)�V π(x) for all x∈X, implying that
for any δ,

J π̂
δ �Jπ

δ .
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3.2. honey-bees policy iteration

HBPI is inspired from PI and is adapted from MBO within the context of
SDP with a key operation called “policy switching” [7], which is much like
crossover operation in GA, for multiple policies manipulation. HBPI starts
with an arbitrarily selected initial queen’s policy π0 ∈� and at each itera-
tion m�0, HBPI generates πm+1, which is no worse than the current pol-
icy πm, i.e., J

πm+1
δ �J

πm

δ . It is shown below that the sequence of the policies
πm,m= 0,1,2, . . . converges to π∗ with probability one. As in MBO, we
need to initialize and select some parameters (refer the Initialization step in
Figure 2). In addition, we introduce more parameters: we denote Pm as the
mutation selection probability, Pg the global mutation probability, and Pl

the local mutation probability. We also define action selection distribution ξ

as a probability distribution over A such that
∑

a∈A ξ(a)= 1 and ξ(a) > 0
for all a∈A.

A high-level description of HBPI is shown in Figure 2, where some steps
are described at a conceptual level, with details provided in the following
subsections. Because overall procedure of HBPI is similar to MBO, we pro-
vide details only for necessary parts.

3.2.1. Queen’s Mating Flight

The queen’s mating flight portion is similar to MBO’s in Figure 1. We need
to select/generate a potential drone policy for mating with the queen. In
MBO, the speed of the queen, S(k) was directly used as the probability
of generating a potential drone’s genotype (refer Equation (1)). Here we
generate a random drone policy φk with S(k), where S(k) is used for the
probability of determining whether the old potential drone’s policy is glob-
ally or locally transformed in the Potential Drone Policy Selection step in
Figure 2.

In the Potential Drone Policy Selection step in Figure 2, for each state
of the (previously considered) drone’s policy φk−1, the specified action is
altered probabilistically. We distinguish between two types of transforma-
tion – “local” and “global” – which are differentiated by how much of the
policy φk−1 is likely be changed. Local transformation is intended to guide
the algorithm in obtaining a true optimal policy through local search of
“nearby” policies, whereas the global mutation allows HBPI to escape from
local optima. A high transformation probability indicates that many com-
ponents of the policy vector are likely to be modified, representing a more
global change, whereas a low mutation probability implies that very little
transformation is likely to occur, meaning a more localized perturbation.
For this reason, we assume that Pl	Pg, with Pl being very close to zero
and Pg being very close to one.
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Figure 2. Honey-bees optimization for stochastic dynamic programming.



436 H.S. CHANG

We first determine whether the transformation will be global or local. The
transformation is global with probability S(k) and local otherwise. If the pol-
icy φk−1 is globally (locally) mutated, for each state x, φk−1(x) is changed with
probability Pg(Pl). If a transformation does occur, it is carried out according
to the action selection distribution ξ , i.e., the new potential drone’s policy φk

is generated according to Pr{φk(x)=a}= ξ(a), for all modified states x (the
actions for all other states remain unchanged). For example, one simple ξ is
the uniform action selection distribution, in which case the new (modified)
policy would randomly select a new action for each modified state (indepen-
dently) with equal probability over the entire action space.

Note that because the value of the queen’s speed gets smaller in the
inner Repeat step, the probability that a local transformation will occur
gets higher. This is also similarly reflected in the Potential Drone Policy
Acceptance step as in MBO.

3.2.2. Policy Switching

A key operation in HBPI is policy switching that combines multiple poli-
cies automatically to generate an improved policy no worse than all of the
policies that policy switching combines. The policy switching operation is
in spirit of crossover operation in GA and at the same time the work-
ers’ broods improvements in MBO because the combined policy is guar-
anteed to be an improved policy. Note that this property does not hold
in general for combinatorial optimization methods so that a heuristic local
search is usually used for (broods) improvements compared with a system-
atic improvement method of policy switching.

Formally, given a nonempty subset � of �, we define a policy π̄ gener-
ated by policy switching with respect to � as

π̄(x)∈
{

arg min
π∈�

(V π(x))(x)

}
, x ∈X. (4)

The following result states that π̄ improves all policies in �. See [7] for a
proof.

THEOREM 3.1. Consider a nonempty subset � of � and the policy π̄

generated by policy switching with respect to � given in Equation (4).
Then, for all x ∈X,

V π̄(x)�min
π∈�

V π(x).

The above theorem immediately implies the following result (see Corol-
lary 3.1 in [9]):
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COROLLARY 3.1. Consider a nonempty subset � of � and the policy
π̄ generated by policy switching with respect to � given in Equation (4).
Then, for any initial state distribution δ,

J π̄
δ �min

π∈�
Jπ

δ .

From the above results and from the construction of πm given as

πm+1(x)∈
{

arg min
π∈{πm,φu

e }
(V π(x))(x)

}
, x ∈X,

we have the following:

COROLLARY 3.2. For any δ and for all m�0,

J
πm+1
δ �min

{
J

πm

δ , J
φu

e

δ

}
.

In other words, the new queen’s policy πm+1 for the iteration m + 1
improves any policy generated over the iteration m (i.e., any policy in the
queen’s spermatheca P before the Broods Generation and Improvements step
and φc

i , φ
m
i , i = 1, . . . , j ) and the queen’s policy πm at the iteration m. In

this sense, we can view HBPI as a variant of the PI algorithm with “multi-
policy” improvement.

Note that policy switching directly manipulates policies to generate an
improved policy relative to all policies it was applied to, eliminating the
operation of minimization over the entire action space. The computational
time complexity of policy switching is O(r|X|), where r is the number of
policies policy switching operates on and the complexity is independent
of the action space size. This is the main computational advantage that
replaces the policy improvement step in the original PI for the SDP prob-
lems with large action spaces.

REMARK 1. Suppose that the action space A is relatively small, making
the direct manipulation of policies by policy switching not helpful. Then,
we can replace the Policy Switching step with a method called “paral-
lel rollout” [7], which is a generalization of the policy improvement step
of PI with multi-policy improvement. We simply replace policy switching
operation with

π̄(x)∈arg min
a∈A

⎧⎨
⎩C(x, a)+γ

∑
y∈X

P (x, a)(y)min
π∈�

V π(y)

⎫⎬
⎭ , x ∈X
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to generate a new policy π̄ with respect to a set of policies �. Then every
property we discussed before still holds and it is guaranteed that the result-
ing HBPI is faster than PI in terms of the number of iterations (with the
same initialization for both algorithms).

REMARK 2. The elitist concept used in HBPI is different from the one
used in MBO from De Jong’s [11]. The elitist for a set B⊆� in MBO is
argminx∈Bf (x). On the other hand, the elitist for a set �⊆� in HBPI is
a policy that is no worse than any π ∈�.

3.2.3. Policy Mutation

Policy mutation takes a given policy, and for each state, alters the spec-
ified action probabilistically as in the Potential Drone Policy Selection
step. The main reason to generate mutated policies is to avoid being
caught in a local minimum, making a probabilistic convergence guarantee
possible.

As before, we distinguish between two types of mutation – local and
global – The Policy Mutation step in Figure 2 first determines whether the
mutation will be global or local, with probability Pm. If the policy π is
globally (locally) mutated, for each state x, π(x) is changed with proba-
bility Pg(Pl). If a mutation does occur, it is carried out according to the
action selection distribution ξ .

3.2.4. Convergence Analysis

THEOREM 3.2. Given Pm,Pg, and Pl ∈ (0,1) and an action selection dis-
tribution ξ such that

∑
a∈A ξ(a)= 1 and ξ(a)> 0 for all a ∈A, as m→∞,

V πm(x)→ V ∗(x), x ∈X with probability one uniformly over X, regardless
of π0.

Proof. The proof is very similar to the proof of Theorem 2.1 with small
extensions. As before, let us first fix the iteration m�0 arbitrarily. From the
choice of e=E(0), for k > e−Emin

β
, E(k)<Emin so that the inner Repeat step

in Figure 2 finishes with k= k̂=�E(0)−Emin
β
�.

From the inner Repeat step, once an optimal policy π∗ is generated, it
is deposited into the queen’s spermatheca with probability 1 and it is kept
there throughout the inner Repeat step.

Let θl be the probability of generating one of the optimal policies by
local transformation and let θg the probability of generating one of the
optimal policies by global transformation. Then,

θl �
∏
x∈X

Plξ(π∗(x))= (Pl)
|X| ·

∏
x∈X

ξ(π∗(x))>0
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θg �
∏
x∈X

Pgξ(π∗(x))= (Pg)
|X| ·

∏
x∈X

ξ(π∗(x))>0, (5)

where π∗ is a particular optimal policy in � that achieves V ∗(x), x ∈X.
Then the minimal probability p of generating π∗ in the inner Repeat step
is given by

p= min
k=1,... ,k̂−1

{
S(k)θg+ (1−S(k))θl

}
>0.

We then have that

Pr{φk̂=π∗}�1− (1−p)k̂ >0,

which immediately implies that

Pr{φe=π∗}�1− (1−p)k̂,

which further implies that because

πm+1(x)∈
{

arg min
π∈{πm,φu

e }
(V π(x))(x)

}
, x ∈X,

Pr{V πm+1(x)�V ∗(x),∀x ∈X}�1− (1−p)k̂.

Let the probability of generating π∗ by the mutation process pb in the
Policy Mutation step:

pb �Pm(Pg)
|X| ·

∏
x∈X

ξ(π∗(x))+ (1−Pm)(Pl)
|X| ·

∏
x∈X

ξ(π∗(x)).

Then we have that

Pr{V πm+1(x)�V ∗(x),∀x ∈X}�(1− (1−p)k̂)+ (1− (1−pb)
j )

−(1− (1−p)k̂)(1− (1−pb)
j )>0.

This result holds for any fixed m= 0,1,2, . . .. Therefore, with some ε ∈
(0,1],

Pr
{
V πm

(x)=V ∗(x),∀x ∈X
}
�1− (1− ε)m >0,

which proves the claim.
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4. Conclusion

In this paper, we refined a metaheuristic, MBO, and showed its conver-
gence to the global optimum value. Adapting MBO, we then proposed
a PI-inspired algorithm, HBPI, for infinite horizon discounted cost SDP
problems, and its validity has been demonstrated by convergence analy-
sis. The present paper focused on the theoretical properties of the algo-
rithms. Of course, the future research will be an experimental evaluation on
diverse dynamic stochastic optimization problems as they frequently occur
in application contexts.

Convergence results are a first step to gain some confidence in the theo-
retical soundness of a heuristic algorithm. An important issue from a prac-
tical point of view are assertions on the speed of convergence to “good”
solutions, depending on the chosen parameter values of the algorithm. Our
results in this paper do not yet cover this issue, since the analysis is based
on rather rough probabilistic bounds. But the convergence rate analysis
of HBPI would be very difficult as there is no known result for PI. The
purpose of this paper is to give a first demonstration of the capability of
the MBO approach (in a theoretical perspective) for solving combinatorial
optimization problems and stochastic sequential decision-making problems.
More detailed investigations will be necessary to make the approach fruit-
ful for applications.
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